高中数学必修三 二进制转化十进制 有关知识点

二进制转十进制 要从右到左用二进制的每个数去乘以2的相应次方,从最后一位开始算,依次列为第0、1、2...位 第n位的数(0或1)乘以2的n次方 得到的结果相加就是答案 通用公式为:abcd 二进制转十进制

要从右到左用二进制的每个数去乘以2的相应次方,从最后一位开始算,依次列为第0、1、2...位

第n位的数(0或1)乘以2的n次方 得到的结果相加就是答案

通用公式为:abcd.efg(2)=d*2^0+c*2^1+b*2^2+a*2^3+e*2^-1+f*2^-2+g*2^-3

比如:1101.01(2)=1*2^0+0*2^1+1*2^2+1*2^3 +0*2^-1+1*2^-2=1+0+4+8+0+0.25=13.25

或者把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。

比如:1101=8+4+0+1=13

再比如:二进制数1000110转成十进制数可以看作这样:

数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后对应十进制数即2的1次方+2的2次方+2的6次方, 即

1000110=64+0+0+0+4+2+0=70

二进制/ 十进制数转换表

十进制值 0 1 2 3 4 5 6 7 8 9 10 11 12

二进制值 00 01 10 11 100 101 110 111 1000 1001 1010 1011 1100

■高中数学必修三:将十进制数25化为二进制数为?

解:25÷2=12…1

12÷2=6…0 6÷2=3…0 3÷2=1…1 1÷2=0…1

故25(10)=11001(2)

方法:除k取余法:即将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案!

■高中数学必修二知识点总结

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

当 时, ; 当 时, ; 当 时, 不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式: 直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式: ,直线斜率为k,直线在y轴上的截距为b

③两点式: ( )直线两点 ,

④截矩式:

其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

⑤一般式: (a,b不全为0)

注意:各式的适用范围 特殊的方程如:

平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线 ( 是不全为0的常数)的直线系: (c为常数)

(二)垂直直线系

垂直于已知直线 ( 是不全为0的常数)的直线系: (c为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系: ,直线过定点 ;

(ⅱ)过两条直线 , 的交点的直线系方程为

( 为参数),其中直线 不在直线系中。

(6)两直线平行与垂直

当 , 时, ;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点 相交

交点坐标即方程组 的一组解。

方程组无解 ; 方程组有无数解 与 重合

(8)两点间距离公式:设 是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点 到直线 的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程 ,圆心 ,半径为r;

(2)一般方程

当 时,方程表示圆,此时圆心为 ,半径为

当 时,表示一个点; 当 时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出d,e,f;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆 ,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当 时两圆外离,此时有公切线四条;

当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当 时,两圆内切,连心线经过切点,只有一条公切线;

当 时,两圆内含; 当 时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:v = ; s =

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言: 公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线

② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

a、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 b、证明作出的角即为所求角 c、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:a α a∩α=a a‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行 线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行 线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为 。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点o,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为 。 ②平面的垂线与平面所成的角:规定为 。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

■苏教版高中数学必修3有哪些重要的知识点?

流程图比较重要,伪待码也比较重要,两个在高一都是填空必考,然后就是概率和方差必考一个,

■求高中数学必修3知识点

必修3第一章:算法1、算法三种语言:自然语言、流程图、伪代码;2、算法的三种基本结构:顺序结构、选择结构、循环结构3、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法;4、循环结构中常见的两种结构:当型循环结构、直到型循环结构5、基本算法语句:①赋值语句:“←”②输入输出语句:“read” “print”③条件语句:if a thenbelsecend if④循环语句:“for”语句for i from “初值”to “终值”step “步长”…end for“do”语句do…until aend do“while”语句while a…end while⑹算法案例:辗转相除法—同余思想第二章:统计1、抽样方法:①简单随机抽样(总体个数较少)②系统抽样(总体个数较多)③分层抽样(总体中差异明显)注意:在n个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为 .2、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1.⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等.②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的药重复写.3、总体特征数的估计:⑴平均数:;⑵方差与标准差:一组样本数据 方差:;标准差:注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.⑶线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:(最小二乘法) 注意:线性回归直线经过定点 .第三章:概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示;⑵必然事件、不可能事件、随机事件的特点;⑶随机事件a的概率:;2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:基本事件可列举;个基本事件都是等可能发生⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件a包含了其中的m个基本事件,则事件a发生的概率 .3、几何概型:⑴几何概型的特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生.⑵几何概型概率计算公式:.(其中测度根据题目确定,一般为线段、角度、面积、体积等.)4、互斥事件:⑴不能同时发生的两个事件称为互斥事件;⑵如果事件 任意两个都是互斥事件,则称事件 彼此互斥.⑶如果事件a,b互斥,那么事件a+b发生的概率,等于事件a,b发生的概率的和,即:⑷如果事件 彼此互斥,则有:⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件.①事件 的对立事件记作 —— ②对立事件一定是互斥事件,互斥事件未必是对立事件.

■总结高中数学必修三、四知识点

必修3:http://wenku.baidu.com/view/a5c51e11f18583d0496459f6.html 必修4:http://wenku.baidu.com/view/f0c3a56ba45177232f60a2ee.html

■高中数学必修三知识点总结是什么?

第一章 算法初步 1、算法 2、程序框图

3、算数的三种基本逻辑结构:(1)顺序结构(2)条件结构(3)循环结构

4、基本算法语句:(1)输入、输出语句(2)赋值语句(3)条件语句(4)循环语句

5、算法案例:(1)辗转相除法与更相减损术(2)秦九韶算法(3)进位制

第二章 统计

1、收集数据(抽样方法):(1)简单随机抽样(2)系统抽样(3)分层抽样

2、整理、分析、数据、估计、推断:(1)用样本估计总体:①用样本频率估计总体分布②用样本数据特征估计总体数据特征(2)变量间的相关关系:线性回归分析

第三章 概率

随机事件 —— 概率 —— 概率的意义与性质:1、古典概型2、几何概型 2、应用概率解决实际问题 —— 随机数与随机模型

——

■求高中数学必修3知识点采纳赏分

必修3 第一章:算法 1、算法三种语言:

自然语言、流程图、伪代码;

2、算法的三种基本结构:

顺序结构、选择结构、循环结构

3、流程图中的图框:

起止框、输入输出框、处理框、判断框、流程线等规范表示方法;

4、循环结构中常见的两种结构:

当型循环结构、直到型循环结构

5、基本算法语句: ①赋值语句:“←”

②输入输出语句:“read”“print”

③条件语句: ifathen b else c endif ④循环语句: “for”语句

forifrom“初值”to“终值”step“步长”

endfor “do”语句 do untila enddo “while”语句 whilea endwhile

⑹算法案例:辗转相除法—同余思想

第二章:统计 1、抽样方法:

①简单随机抽样(总体个数较少)

②系统抽样(总体个数较多)

③分层抽样(总体中差异明显)

注意:在n个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为。

2、总体分布的估计: ⑴一表二图:

①频率分布表——数据详实

②频率分布直方图——分布直观

③频率分布折线图——便于观察总体分布趋势

注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:

①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的药重复写。

3、总体特征数的估计:

⑴平均数:;

⑵方差与标准差:一组样本数据

方差:; 标准差:

注:方差与标准差越小,说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程

①变量之间的两类关系:函数关系与相关关系;

②制作散点图,判断线性相关关系

③线性回归方程:(最小二乘法)

注意:线性回归直线经过定点。

第三章:概率

1、随机事件及其概率:

⑴事件:试验的每一种可能的结果,用大写英文字母表示;

⑵必然事件、不可能事件、随机事件的特点;

⑶随机事件a的概率:;

2、古典概型:

⑴基本事件:一次试验中可能出现的每一个基本结果;

⑵古典概型的特点:基本事件可列举;个基本事件都是等可能发生

⑶古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件a包含了其中的m个基本事件,则事件a发生的概率。

3、几何概型: ⑴几何概型的特点:

①所有的基本事件是无限个;

②每个基本事件都是等可能发生。

⑵几何概型概率计算公式:。(其中测度根据题目确定,一般为线段、角度、面积、体积等。)

4、互斥事件:

⑴不能同时发生的两个事件称为互斥事件;

⑵如果事件任意两个都是互斥事件,则称事件彼此互斥。

⑶如果事件a,b互斥,那么事件a+b发生的概率,等于事件a,b发生的概率的和,

即:

⑷如果事件彼此互斥,则有:

⑸对立事件:两个互斥事件中必有一个要发生,则称这两个事件为对立事件。

①事件的对立事件记作——

②对立事件一定是互斥事件,互斥事件未必是对立事件。

■高中数学必修3的知识点总结?

第十二部分 统计与统计案例

1.抽样方法

⑴简单随机抽样:一般地,设一个总体的个数为n,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。

注:①每个个体被抽到的概率为 ;

②常用的简单随机抽样方法有:抽签法;随机数法。

⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的

规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。

注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;

④按预先制定的规则抽取样本。

⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。

注:每个部分所抽取的样本个体数=该部分个体数

2.总体特征数的估计:

⑴样本平均数 ; ⑵样本方差 ; ⑶样本标准差 = ;

3.相关系数(判定两个变量线性相关性):

注:⑴ >0时,变量 正相关; <0时,变量 负相关;

⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。

4.回归分析中回归效果的判定:

⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。

注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;

② 越接近于1,,则回归效果越好。

5.独立性检验(分类变量关系):

随机变量 越大,说明两个分类变量,关系越强,反之,越弱。

十、导 数1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (c为常数), , .2.多项式函数的导数与函数的单调性:在一个区间上 (个别点取等号) 在此区间上为增函数.在一个区间上 (个别点取等号) 在此区间上为减函数.3.导数与极值、导数与最值:(1)函数 在 处有 且“左正右负” 在 处取极大值;函数 在 处有 且“左负右正” 在 处取极小值.注意:①在 处有 是函数 在 处取极值的必要非充分条件.②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.③单调性与最值(极值)的研究要注意列表!(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处l”还是“过l”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.十一、概率、统计、算法第十六部分 理科选修部分

1. 排列、组合和二项式定理

⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈n*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;

⑵组合数公式: (m≤n), ;

⑶组合数性质: ; ⑷二项式定理:

①通项: ②注意二项式系数与系数的区别;

⑸二项式系数的性质:

①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;

(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。

2. 概率与统计 ⑴随机变量的分布列:

①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;

②离散型随机变量:

x x1 x2 … xn …

p p1 p2 … pn …

期望:ex= x1p1 + x2p2 + … + xnpn + … ;

方差:dx= ; 注: ; ③两点分布:

x 0 1 期望:ex=p;方差:dx=p(1-p).

p 1-p p 4 超几何分布:

一般地,在含有m件次品的n件产品中,任取n件,其中恰有x件次品,则 其中, 。

称分布列 x 0 1 … m p …

为超几何分布列, 称x服从超几何分布。

⑤二项分布(独立重复试验):

若x~b(n,p),则ex=np, dx=np(1- p);注: 。

⑵条件概率:称 为在事件a发生的条件下,事件b发生的概率。

注:①0 p(b|a) 1;②p(b∪c|a)=p(b|a)+p(c|a)。

⑶独立事件同时发生的概率:p(ab)=p(a)p(b)。

⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;

(6)正态曲线的性质:

①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;

③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;

5 当 一定时,6 曲线随 质的变化沿x轴平移;

7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;

越小,曲线越“高瘦”,表示总体分布越分散。

注:p =0.6826;p =0.9544

p =0.9974第十部分 复数

1.概念:

⑴z=a+bi∈r b=0 (a,b∈r) z= z2≥0;

⑵z=a+bi是虚数 b≠0(a,b∈r);

⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈r) z+ =0(z≠0) z2<0;

⑷a+bi=c+di a=c且c=d(a,b,c,d∈r);

2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈r),则:

(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;

3.几个重要的结论: ;⑶ ;⑷

⑸ 性质:t=4; ;

(6) 以3为周期,且 ; =0;

(7) 。 4.运算律:(1)

5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。

6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;

  • 共2页
  • 1

相关阅读